Describing motions

1 - Word definitions

The table below contains nine definitions about some words connected with how we describe movement: speed, distance, motion, decelerate, metre, gradient, calculate, equation, accelerate. Use each word in the correct space in the table to make a definition.

An .. is a formula	that shows how two or more quantities are related.
To ... is a verb	which means to work out a numerical value
The .. is a noun	that tells us how steep a graph is
A ... is a noun	that is a unit of distance
... is a noun	which tells us how far something has moved
... is a noun	which tells us how fast something is moving
To ... is a verb	that means to slow down
To ... is a verb	which means to go faster
... is a noun	which is another word for movement

2 - The average speed

Give the definition and the formula of the average speed:
\qquad

$$
v=
$$

Convert $36 \mathrm{~km} / \mathrm{h}$ into m / s : \qquad

3 - Interpreting the shape of a graph

A distance-time graph is a useful way of representing how an object moves. In this exercise, you will use words which describe a graph as well as words which describe motion. This distance-time graph represents a car's journey along a road.

Complete these descriptions of sections A, B and C, using words from §1-.
In section A, the distance between the car and at its starting point is \qquad slowly. So the shape of the graph is . and the gradient This shows that the car is travelling

Calculate its average speed to 2 significant digits:

In section B, compared to section A, the distance travelled in a given time (5 min) is \qquad So the gradient of the graph \qquad This shows that the car is travelling \qquad Calculate its average speed to 2 significant digits:
\qquad
\qquad

Describing motions

4 - Exercise: a journey by coach

In this exercise, you will interpret information describing a journey by coach, and present the information in a table and as a graph.

Read this description of a coach journey:
The coach left the bus station at 13:00 pm. It drove slowly at first, reaching the edge of town after 30 minutes. It had travelled 10 km . Next, it travelled along the motorway, covering 80 km in one hour. It left the motorway and travelled 10 km along a country road. At 14:50 pm, it arrived in a village square where it waited for 10 minutes before setting off back to the town.
a. The coach journey was in four sections. Complete the table to show the times and distances for each section of the journey. The first row has been done for you

Section	Clock time at the end	Time taken (h)	Distance travelled (km)	Average speed (km/h)
A- Bus station to edge of town	$13: 30$	0.5	10	$10 / 0.5=20$
B- Motorway				
C- Country road				
D- Village square				

b. Now complete the last column of the table by calculating the coach's average speed for each section of this journey.
c. On the grids besides, draw a distancetime graph and a speed-time graph for the journey. Label the four sections of the journey.

5 - Exercise: using a chronophotography

Chronophotography is an old technique which captures the position of the ball at different times in a single image.

The chronophotography besides shows a ball falling. Its position is plotted every 0.1 s .
a. On the chronophotography, label the positions of the ball from its start ($\mathrm{B}_{0}, \mathrm{~B}_{1}, \mathrm{~B}_{2} \ldots$)
b. Explain how you can tell that the ball is accelerating as it falls.
\qquad
\qquad
c. Now, thanks to a double headed arrow, show the distance travelled from the start to 0.5 s .
d. The scale of the chronophotography is $\mathbf{1 ~ c m}$ on the sheet $\leftrightarrow \mathbf{2 4} \mathbf{~ c m}$ in reality. What is the real distance travelled by the ball from the start to 0.5 s ?
\qquad
\qquad
e. Calculate the average speed of the ball over the first 0.5 s :
\qquad
\qquad

